International Workshop on Quantum Many-Body Problems in Particle, Nuclear, and Atomic Physics March 8-11, 2017, Da Nang, Vietnam

FUNDAMETAL RESEARCH BASED ON NEUTRON BEAMS AT DALAT NUCLEAR RESEARCH REACTOR

VUONG HUU TAN

President, Vietnam Atomic Energy Society

Member of neutron research group, Dalat Nuclear Research Institute

vuonghuutan@gmail.com

Content

1. General information

2. Fundamental research and applications using neutron beams at the Dalat nuclear research reactor (DNRR):

- -Neutron beams development using the filtered technique;
- -Nuclear physics research:
 - + Neutron cross-section measurement (capture cross-section, total cross-section);

+ Gamma two-steps cascade measurement (decay schema, level density and gamma strength function);

-Neutron activation analysis (INAA, CNAA, PGNAA, CINAA). - Manufacture of radiation measurement equipment using DSP₂ and FPGA.

2 Association description

1. General information

ACTIVITIES

- Development of mono-energetic neutron beams using the filtered technique;
- Nuclear data measurement (neutron capture, total cross section, gamma decay schema, level density,...);
- Development and application of neutron activation analytical techniques (INAA, PGNAA, CNAA, CoinINAA, hydro index,...);

Main characteristics of DNRR

- **Reactor type:** Pool type (TRIGA Mark II, modified to Russian type of IVV-9)
- Nominal power: 500 kW
- Maximum thermal neutron flux in the core: 2.1x10¹³ n.cm⁻².s⁻¹
- Coolant and moderator: Light water
- Reflector: Beryllium and graphite
- Core cooling mechanism: Natural convection
- Fuel type: Russian type, VVR-M2, UO2+AI, 19.75% enrichment
- Control rods:
 - 2 safety rods: B₄C
 - 4 shim rods: B₄C; 1 fine rod
- Vertical irradiation channels: 4 holes in core and 40 holes at the rotary rack
- Horizontal beam-ports: 4 (1 tangential - No #3 and 3 radial - No #1, #2, #4) 4
- Thermal column: 1

Neutron beam channels of DNRR and applications

Horizontal section view of DNRR

Spectroscopy systems

Neutron spectroscopy

Low background gamma spectroscopy

Compton suppression spectroscopy

ATIVITIES

1. Development of mono-energetic neutron beams using the filtered technique;

2. Nuclear data measurement (neutron radiative capture, neutron total cross sections, gamma decay schema, level density and gamma strength function);

3. Development and Application of neutron activation analytical techniques (INAA, PGNAA, CNAA, CoinINAA);

4. Design and manufacture of radiation measurement systems;

Development of filtered neutron beams

Design and constructions of neutron filter plugs at Dalat research reactor

Before beam development (the channel is closed)

After beam development (the channel is being used)

Development of filtered neutron beams

Design and constructions of neutron filter plug

Development of filtered neutron beams

Monte-Carlo simulation and design for filtered thermal neutron beams at Dalat research reactor

Monte-Carlo simulation of neutron radiation for filtered thermal neutron beams at Dalat research reactor

Monte-Carlo simulation of gamma radiation for filtered thermal neutron beams at Dalat research reactor

Development of filtered neutron beams

Monte-Carlo simulation for filtered neutron beam at Dalat research reactor

Development of filtered neutron beams

Monte-Carlo simulation and experiments for radial distribution of thermal neutron fluxes

keV- filtered neutron spectra (cal.)

Development of filtered neutron beams

An outside view of filtered neutron beam at the channel No.2 of Dalat research reactor with radiation dose rate information (white color for neutron and black color for gamma)

Development of filtered neutron

beams Neutron beam

characteristics:

Neutron energy	24keV	59keV	133keV
Neutron flux (n/cm ² .s)	6.1x10 ⁵	5.3x10 ⁵	3.2x10 ⁵
Energy resolution (keV)	1.8	2.7	3.0
Peak relative intensity (%)	96.72	92.28	92.89
Beam collimated diameter	3 cm	3 cm	3 cm
Filter compositions	B 0.2g/cm ² Fe 20cm Al 30cm S 35g/cm ²	B 0.2g/cm ² Ni 10cm V 15cm Al 5cm S 35g/cm ²	B 0.2g/cm ² Cr 50g/cm ² Ni 10cm Si 60cm

Development of filtered neutron beams

characteristics:

Neutron energy	0.025 (eV)	54keV	148keV
Neutron flux (n/cm ² .s)	1.6x10 ⁶	6.7x10 ⁵	3.9x10 ⁶
Energy resolution (keV)		1.5	14.8
Peak relative intensity (%)	Rcd = 420	78.05	95.78
Beam collimated diameter	3 cm	3 cm	3 cm
Filter compositions	Si 80 cm Bi 6 cm (single crystals)	B 0.2g/cm ² Si 98cm S 35g/cm ²	B 0.2g/cm² Si 98cm Ti 1cm

Development of filtered thermal neutron beams

Neutron beam characteristics:

	Filters	Thermal Φ_{th} (n/cm ² /s)	Epithermal Φ _{epi} (n/cm ² /s)	R _{Cd} ratio	Collimators
1	120 cm Si (Single Crystal)	$8.08{ imes}10^{\scriptscriptstyle 5}\ \pm 0.15\%$	2.41×10 ² ± 3.03%	205	Cylinder $\Phi = 3$ cm
2	80cm Si + 3cm Bi (Single Crystal)	$1.02 \times 10^{6} \pm 0.14\%$	$2.82 \times 10^{2} \pm 0.96\%$	230	Cylinder Ф = 3cm
3	40cm Si + 9cm Bi (Single Crystal)	1.51×10 ⁶ ± 1.57%	4.85×10 ² ± 1.45%	128	Cone $\Phi_1 = 5.0 \text{ cm}$ $\Phi_2 = 4.5 \text{ cm}$ $\Phi_3 = 4.0 \text{ cm}$
4	80cm Si + 6cm Bi (Single Crystal)	0.95×10 ⁶ ± 1.25%	0.92×10 ² ± 2.85%	420	Cone $\Phi_1 = 5.0 \text{ cm}$ $\Phi_2 = 4.5 \text{ cm}$ $\Phi_3 = 4.0 \text{ cm}^{20}$

Nuclear data measurement

1. Measurements of neutron reaction cross-sections:

- Total neutron cross-section;
- Neutron capture cross-section.

2. Gamma decay schema, level density: using of gamma-gamma coincidence spectroscopy and gamma two-step cascade method.

Measurements of neutron reaction cross-sections

Total neutron cross sections

Experimental arrangement

$$\sigma_t = \frac{1}{\rho x} \ln \frac{1}{T}$$

Total neutron cross section
Neutron transmission ratio

$$T = \frac{a - a^b}{a_0 - a_0^b}$$

¹²C (n,tot); En=24, 54, 59, 133 and 148 keV

²³⁸U (n,tot); En=24, 54, 59, 133 and 148 keV

Measurements of neutron reaction cross-sections

Neutron capture cross sections

The measurement of neutron capture cross sections have been carried out on the filtered neutron beams at the Dalat research reactor.

The measured neutron capture cross sections were obtained relative to the standard capture cross sections of the ¹⁹⁷Au(n,g)¹⁹⁸Au reaction by the activation method.

The corrections for multiple scattering, self-shielding are taken into account by Monte Carlo method.

Measurements of neutron reaction cross-sections

Neutron capture cross sections

During irradiation in a neutron beam with energy spectrum $\phi(E)$, the capture reaction rate R, Activity A of samples are defined as following expressions:

$$R = N \int \phi(E) \sigma_a(E) dE , \quad <\sigma_a >= \frac{\int \sigma_a(E) \phi(E) dE}{\int \phi(E) dE}; <\Phi >= \int \phi(E) dE.$$

$$R = N < \sigma_a > <\Phi > . \qquad A = R(1 - e^{-\lambda t_1}), \qquad A = \frac{Cf_c \lambda}{\varepsilon_{\gamma} I_{\gamma} e^{-\lambda t_2} (1 - e^{-\lambda t_3})},$$

Measurements of neutron reaction cross-sections Neutron capture cross sections

The result of measurement for ⁵¹V(n,g)⁵²V reaction

¹³⁹La(n, γ)¹⁴⁰La; E_n = 54 and 148

¹⁵²Sm(n, γ)¹⁵³Sm; E_n = 54 and 148

¹⁹¹Ir(n, γ)¹⁹²Ir_; E_n = 54 and 148 keV

¹⁹³Ir(n,γ)¹⁹⁴Ir_; E_n = 54 and 148 keV

¹⁸⁵Re(n,γ)¹⁸⁶Re; En=24, 54, 59, 133 and 148 keV

¹⁸⁷Re(n,γ)¹⁸⁸Re, En=24, 54, 59, 133 and 148 keV

Measurements of gamma decay schema and level density

Gamma - gamma coincidence method

Reaction: AXX((n,))A+1X

^{A+1}X in compound state emits gamma to go back to ground state.

Gamma – gamma coincidence spectrometer measured only gamma in cascade (Ex: red transition in Figure).

Therefore, provides information to determine intermediate levels. **Obtained data:**

- Partial level scheme;
- Gamma cascade transition intensity;
- Level density and Gamma Strength function, extracted from gamma cascade transition intensity

Gamma – gamma coincidence spectrometer at DNRI

Energy nominal resolution: \sim 1.9 keV at 1332 keV measured with Co-60; Timing resolution: \sim 12 ns measured with Co-60.

Experiment setup

Neutron flux at target position = 1.7×10^5 n.cm⁻².s⁻¹

R(Cd/Au) = 230

Distance from target to detector windows = 5 cm

Some obtained results at DNRI

41

(Cont.)

Summation spectrum of Sm-153

43

Summation spectrum of Yb-172

TSC spectra

Two-step gamma spectrum of Yb-172

TSC spectrum to ground state of W-183, W-184 and W-187

Energy (keV)

Cascade intensity, level density and gamma strength function

Igg, level density and RSF of Sm-153

Igg, level density and RSF of Yb-172

Summation spectrum of coincidence pulses for 172 Yb(n,2 γ) reaction.

- Two-step cascade spectrum corresponding to the ground state (left panel) and the final level with energy level Ef = 78.8 keV (right panel).
- The part of redsed red kp eats in et Sunspectourneare 20% (totate) Earred 7878% (tot
- Spin range internediate inversion of the content of the content

New gamma transitions and levels

- Measured for approximately 830 hours
- 479 cascades were determined, whereas 128 cascades had statistical count higher than 50 count.
- •61 primary gamma transition and 19 secondary gamma transitions were found to be the same as ENSDF data.
- •18 primary gamma transition and their corresponding energy levels plus 109 secondary gamma transitions are not found to currently exist in ENSDF, therefore considered as the new data

Development and applications of Neutron Activation Analytical Techniques: INAA, CNAA, PGNAA, CoinINAA)

- * Equipment:
- Gamma spectroscopy;
- Coincidence spectroscopy;
- Compton suppression spectroscopy;
- Irradiation pneumatic sample transfer system;
- Automatic measurement sample changer system.
- * Method:
- Delay gamma neutron activation analysis;
- Prompt gamma neutron activation analysis;
- Cyclic neutron activation analysis;
- Coincidence gamma neutron activation analysis.

* Application: Industrials, environment, geological, archeology,... ⁵¹

Determination of element with overlap peaks in NAA by eventevent coincidence technique

The spectra of Montana II Soil in normal and coincidence modes; the coincidence is gated at 264.7 keV.

Detection limit improvement of The area, the peak to background ratios and detection limits of selenium in Montana II Soil in normal and coincidence modes.

	Peak area		Peak to		Detection limit	
Energy			background ratio		(mg/kg)	
(keV)	Normal	Coincidenc	Normal	Coinciden	Normal	Coinciden
		е		се		се
121	6924(104)	16(1)	0.29	0.84	0.21	2.34
(⁷⁵ Se+ ¹⁵² Eu)						
136	939(170)	40(3)	0.04	6.67	1.52	0.53
(⁷⁵ Se+ ¹⁸¹ Hf)						
264	912(196)	45(3)	0.05	6.43	1.41	0.51
(⁷⁵ Se+ ¹⁸² Ta)						
279	262(28)	26(2)	0.01	13.00	4.90	0.23
(⁷⁵ Se+ ²⁰³ Hg						
)						

Design and manufacture of radiation measurement systems

- Purpose:
- Improve skills of maintenance for radiation measurement systems;
- Design and manufacture of some radiation measurement systems for research, applications and training.
- Method:
- Field Programmable Gate Array (FPGA) and Digital Signal Processing (DSP);
- Using simulation tools for designing of spectroscopy and neutron detectors (VHDL, Matlab software).
- Application:
- Design and manufacture of multichannel analyzer, event-event gamma coincidence spectroscopy;
- Design and manufacture of scintillator neutron detector.

Some results of application DSP and FPGA for manufacturing of spectroscopy

Block diagram of gamma spectroscopy using DSP technique

FPGA for manufacturing of

DSP

Some results of application DSP and FPGA for manufacturing of spectroscopy

The gamma spectroscopy using DSP and FPGA 57

Some results of application DSP and FPGA for manufacturing of spectroscopy

DSP and

FPGA

)SP and

The integrated coincidence spectroscopy (2M size), using FPGA and DSP

Pulse Processing by PC (DSP by software)

The quality of DSP based gamma coincidence spectroscopy

Energy spectrum of both detectors. Energy resolution is better 12% at 1332 keV (Co-60), slightly better than our current analog one.

Coincidence curve. Timing resolution is ~ 13 ns (compared to 10 ns with the current analog one).

A prototype of scintillator detector for neutron moscurement

Where: Ch_n, Ch_γ positions of neutron and gamma peaks respectively; $FWHM_n$ and $FWHM_\gamma$: full-width-maximums of neutron and gamma⁶ peaks respectively.

Aspect of education

Belong to the application for research activities, these filtered neutron beams with modern radiation spectrometers are also utilized as experimental facilities for PhD and Master students to carry out their research topics

Aspect of education

	2010	2011	2012	2013	2014
BSc.	1	2	2		
MSc.	5	5	6	6	2
PhD.	4	6	8	9	7

Yearly graduate students perform their research projects used neutron beams at Dalat research reactor

beams at DNRR

Summary

- The neutron filter technique has been successfully applied for development of mono-energetic neutron beams at the Dalat research reactor.
- The neutron beams are currently applied for basis research, applications and education at the Nuclear Research Institute/VINATOM.
- The research topic carried out includes: measurements of neutron total and neutron capture reaction cross-sections; Measurement of nuclear energy level scheme and level density.
- The Monte Carlo code (Geant4 or MCNP5) have been used for simulations of selt-shielding, multi-scattering parameters and HPGe detector efficiency in order to reduce uncertainty of experimental results.

Summary

- •The neutron filtered beams of 2, 24, 54, 59, 133 and 148keV are available and useful for measurement of nuclear data.
- The neutron capture cross sections of ¹³⁹La, ^{152,154}Sm, ^{191,193}Ir, ^{146,148,150}Nd, ^{69,71}Ga, ^{185,187}Re, ¹⁸¹Ta, ¹⁶⁰Gd and ¹⁸⁰Hf within the uncertainties of about 5-8% have been measured at keV energies by the activation method.
- The total neutron cross sections of ¹²C, ⁹³Nb, ²³⁸U, ¹⁸¹Ta within the uncertainties of about 1-3% have been measured at keV energies by the neutron transmission technique.
- Level schema, level density and gamma strength function of nucleus (¹⁵³Sm, ¹⁷²Yb, ²³⁹U, ⁵⁶Fe, ⁵⁹Ni, ⁴⁹Ti,...) have been determined by gamma-gamma coincident method from (n,2g) reactions.

Future plan

- Continue neutron cross-section measurement (Determination of neutron resonance parameters; Publication of the experimental data to EXFOR; EXFOR compilation,...);
- Continue gamma cascade measurement (level, density, strength and nuclear structure), extracting LD and RSF from other method such as Oslo method;
- Improvement of accuracy and precision of self-manufactured equipment for nuclear physics research and applications;

