FROM THE YUKAWA TO THE EFIMOV ATTRACTION

Pascal Naidon, RIKEN

ji inii inii iiii ii

INTERNATIONAL WORKSHOP ON QUANTUM MANY-BODY PROBLEMS IN PARTICLE, NUCLEAR, AND ATOMIC PHYSICS DANANG, 2017-03-09

BARAMATER

THE YUKAWA POTENTIAL

 In the 1930s, Hideki Yukawa showed that the exchange of a massive boson field between two particles induces a Coulomb potential exponentially screened by the boson mass.

Mediated potential $V(r) = -g^2 \frac{e^{-kmr}}{r}$

THE YUKAWA POTENTIAL

•

- Coulombadetaatie Leftebacteranaanetiamige exphanagenetiamige exphanagenetiamige exphanaged particles •
- Tail of the nuclear force: exchange of mesons (135 MeV) between nuclear force: exchange of mesons ($m \ge 135$ MeV) between nucleons •

THE EFIMOV POTENTIAL

 In the 1970s, Vitaly Efimov showed that a universal three-body force arises between three resonantlyinteracting particles.

> 2 የøætitleses ወቅ፣ክል/send ahesanbosonson mass

 $V(R) = -\frac{\hbar^2}{2M} \frac{1.006^2}{R^2}$

3 partitleseef onass M

mass

R

 $V(r) = -\frac{\hbar^2}{2m} \frac{0.414^2}{r^2}$

May also be viewed as a two-body mediated potential

Diagrammatic point of view

$$\frac{\frac{1}{g} + \sum_{k}^{\Lambda} \frac{1}{\frac{\hbar^2 k^2}{2\mu}} = \frac{2\mu}{4\pi\hbar^2} \frac{1}{a}}{<0} > 0$$

Scattening hength Reduced mass $\mu = \left(\frac{1}{m} + \frac{1}{M}\right)^{-1}$

Diagrammatic point of view

$$\frac{1}{g} + \sum_{k}^{\Lambda} \frac{1}{\frac{\hbar^2 k^2}{2\mu}} = \frac{2\mu}{4\pi\hbar^2} \frac{1}{a}$$

$$< 0 \qquad > 0$$

Scatteringnength Reduced mass $\mu = \left(\frac{1}{m} + \frac{1}{M}\right)^{-1}$

SYSTEMS EXHIBITING THE EFIMOV ATTRACTION

arXiv:1610.09805

IOP Publishing

Reports on Progress in Physics

Rep. Prog. Phys. 00 (2017) 000000 (77pp)

Review

Efimov physics: a review

Pascal Naidon¹ and Shimpei Endo²

1 RIKEN Nishina Centre, RIKEN, Wako, 351-0198, Japan

² School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia

E-mail: pascal@riken.jp and shimpei.endo@monash.edu

Received 25 September 2014, revised 28 October 2016 Accepted for publication 30 November 2016 Published

Corresponding Editor Professor Gordon Baym

Abstract

This article reviews theoretical and experimental advances in Efimov physics, an array of quantum few-body and many-body phenomena arising for particles interacting via short-range resonant interactions, that is based on the appearance of a scale-invariant three-body attraction theoretically discovered by Vitaly Efimov in 1970. This three-body effect was originally proposed to explain the binding of nuclei such as the triton and the Hoyle state of carbon-12, and later considered as a simple explanation for the existence of some halo nuclei. It was subsequently evidenced in trapped ultra-cold atomic clouds and in diffracted molecular beams of gaseous helium. These experiments revealed that the previously undetermined three-body parameter introduced in the Efimov theory to stabilise the three-body consequences of the Efimov attraction have been since investigated theoretically, and are expected to be observed in a broader spectrum of physical systems.

MOTIVATION

Connection between Yukawa and Efimov mediated potentials?

Yukawa

Efimov

Many-body Bosons are created/absorbed Three-body Boson always there

boson

Bose polaron recently observed

Jørgensen et al, PRL 117, 055302 (2016)

Ming-Guang Hu et al, PRL 117, 055301 (2016)

The (Bogoliubov) quasi-particles excitations of the BEC can mediate a Yukawa interaction

excitatio

To second-order in perturbation

 $1/\xi$

Theory:
$$V(r) \propto -g^2 n_0 \frac{e^{-\sqrt{2r}}}{r}$$

BEC coherence length $\xi = \frac{1}{\sqrt{8\pi n_0 a_B}}$

Ex: Helium-3 impurities in Helium-4 J. Bardeen, G. Baym, and D. Pines, Phys Rev 156, 207 (1067)

The (Bogoliubov) quasi-particles excitations of the BEC can also mediate an Efimov interaction

excitatio

g

Non-perturbative

NON-PERTURBATIVE METHOD: TRUNCATED BASIS

on

Bogoliubov $b_0 = \sqrt{N_0}$ condensateappproximati $b_k = u_k \beta_k - v_k \beta_k^{\dagger}$ Bogoliu Bogoliubov excitation

$$H = \begin{bmatrix} E_{0} + \sum_{k} E_{k} \beta_{k}^{\dagger} \beta_{k} \\ + \sum_{k} (\varepsilon_{k} + gn_{0})c_{k}^{\dagger}c_{k} \\ + \sqrt{N_{0}} \frac{g}{V} \sum_{k,p} (u_{p} \beta_{-p}^{\dagger} - v_{p} \beta_{p})c_{k+p}^{\dagger}c_{k} + h.c. \\ Fröhlich \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} u_{k'} \beta_{k'-p}^{\dagger} \beta_{k'} + v_{k'-p} v_{k'} \beta_{p-k'} \beta_{-k'}^{\dagger})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{k'-p}^{\dagger} \beta_{-k'}^{\dagger} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{-k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{k'-p}^{\dagger} \beta_{-k'}^{\dagger} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{k'-p}^{\dagger} \beta_{-k'}^{\dagger} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{k'-p}^{\dagger} \beta_{-k'}^{\dagger} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{k'-p}^{\dagger} \beta_{-k'}^{\dagger} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{k'-p}^{\dagger} \beta_{-k'}^{\dagger} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{k'-p}^{\dagger} \beta_{-k'}^{\dagger} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{k'-p}^{\dagger} \beta_{-k'}^{\dagger} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{-k'} \beta_{-k'} \beta_{-k'} + v_{k'-p} u_{k'} \beta_{p-k'} \beta_{k'})c_{k+p}^{\dagger}c_{k} \\ + \frac{g}{V} \sum_{k,k',p} (u_{k'-p} v_{k'} \beta_{-k'} \beta_{-k'} + v_{k'-p} u_{k'} \beta_{-k'} \beta_{-k'}$$

na

NON-PERTURBATIVE METHOD: TRUNCATED BASIS

Impurity creation operator

Excitatio n creation operator

BEC groun d state

EQUATIONS

Coupled equiations d_{pand} and $d_{pq'}$

Zerorrandeniinnittectutoff?)

 $F_q = g \frac{1}{V} \sum_{k} u_k \alpha_{q,k-q}$

Three-body Integral equation $\frac{1}{T_q(E)}F_q + \frac{1}{V}\sum_k \frac{u_k^2 F_{k-q}}{E_k + \varepsilon_{|k-q|} + \varepsilon_q - E} = \frac{2n_0}{2\varepsilon_q - E}F_q$

$$-\frac{1}{T_q(E)} = \frac{2\mu}{4\pi\hbar^2} \frac{1}{a} + \frac{1}{V} \sum_k \left(\frac{u_k^2}{E_k + \varepsilon_{|k-q|} + \varepsilon_q - E} - \frac{1}{\varepsilon_k + \varepsilon_k} \right)$$

RESULT: POLARONIC POTENTIAL

Effective potential (Born-Oppenheimer) between polarons:

$$V(r) = \frac{\hbar^2 \kappa^2}{2\mu} \qquad \qquad \frac{1}{a} - \kappa + \frac{1}{r} e^{-\kappa r} + \frac{8\pi n_0}{\kappa^2} = 0$$

For small $k \leq 0$ V(r) V(r) V(r) V(r)V(r)

At resonance $\pm \infty$

 $(a_B \rightarrow 0)$

POSSIBLE EXPERIMENTAL OBSERVATIONS

Heavy impurities (e.g. ¹³³Cs) in a condensate of light bosons (e.g. ⁷Li)

- Polaron RF spectroscopy, mean-field side to the polaron interaction
- Loss by recombination peak with the light bu

h<mark>ift of the loss</mark> i density

CONCLUSIONS

arXiv:1607.04507

- The interaction between two impurities in a Bose-Einstein goes from a Yukawa attraction to an **Efimov attraction**.
- This attraction can bind the two impurities into one or several bipolarons, that asymptote to Efimov trimers of two impurities and a boson.
- The crossover region where bipolarons appear constitutes is an interesting few-to-many-body problem.