

In-beam gamma-ray spectroscopy of ⁶⁸Fe

L.X. Chung ¹, B.D. Linh¹, A. Gillibert ², P. Doornenbal ³, A. Obertelli ², F. Nowacki ⁴, G. Authelet ², H. Baba ³, D. Calvet ², F. Château ², A. Corsi ², A. Delbart ², J.-M. Gheller ², T. Isobe ³, V. Lapoux ², M. Matsushita ⁵, S. Momiyama ^{3,6}, T. Motobayashi ³, M. Niikura ⁶, H. Otsu ³, C. Péron ², A. Peyaud ², E.C. Pollacco ², J.-Y. Roussé ², H. Sakurai ^{3,6}, C. Santamaria ^{2,3}, M. Sasano ³, Y. Shiga ^{3,7}, S. Takeuchi ³, R. Taniuchi ^{3,6}, T. Uesaka ³, H. Wang ³, K. Yoneda ³, F. Browne ⁸, Zs. Dombradi ⁹, S. Franchoo ¹⁰, F. Giacoppo ¹¹, A. Gottardo ¹⁰, K. Hadynska-Klek ¹¹, N.T. Khai ¹, Z. Korkulu ⁹, S. Koyama ^{3,6}, Y. Kubota ^{3,5}, C. Louchart ¹², J. Lee ¹³, M. Lettmann ¹², R. Lozeva ⁴, K. Matsui ^{3,6}, T. Miyazaki ^{3,6}, S. Nishimura ³, L. Olivier ¹⁰, S. Ota ⁵, Z. Patel ¹⁴, N. Pietralla ¹², E. Sahin ¹¹, C. Shand ¹⁴, P.-A. Söderström ³, G.L. Stefan ¹⁰, D. Steppenbeck ⁵, T. Sumikama ¹⁵, D. Suzuki ¹⁰, N.D. Ton ¹, Zs. Vajta ⁹, V. Werner ¹², J. Wu ^{3,16}, and Z. Xu ¹³

¹Institute for Nuclear Science & Technology, VINATOM, 179 Hoang Quoc Viet, Hanoi, Vietnam ²CEA, Centre de Saclay, IRFU, F-91191 Gif-sur-Yvette, France ³RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ⁴IPHC, CNRS/IN2P3, Université de Strasbourg, F-67037 Strasbourg, France ⁵Center for Nuclear Study, University of Tokyo, RIKEN campus, Wako, Saitama 351-0198, Japan ⁶Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan ⁷Department of Physics. Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 172-8501, Japan ⁸School of Computing Engineering and Mathematics. University of Brighton, Brighton BN2 4GJ, United Kingdom ⁹MTA Atomki, P.O. Box 51, Debrecen H-4001, Hungary ¹⁰Institut de Physique Nucléaire Orsay, IN2P3-CNRS, 91406 Orsay Cedex, France ¹¹Department of Physics, University of Oslo, N-0316 Oslo, Norway ¹²Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany ¹³Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong ¹⁴Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ¹⁵Department of Physics, Tohoku University, Sendai 980-8578, Japan ¹⁶State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, P.R. China

International Workshop on Quantum Many-Body Problems in Particle, Nuclear, and Atomic Physics, 8–11/03/2017, Duy Tan Uni.

Outline

- Introduction to "Shell Evolution And Search for 2⁺ energies At RIBF (SEASTAR)" project at RIKEN
- Curent knowledge in ⁶⁸Fe

2 Facilities: RIKEN accelerators +MINOS active target +DALI2 detector

3 Data analysis of ⁶⁸Fe

- ⁶⁹Co(p,2p)⁶⁸Fe
- ⁶⁸Fe(p,p')⁶⁸Fe
- ⁶⁹Fe(p,pn)⁶⁸Fe
- ⁷⁰Ni(p,3p)⁶⁸Fe

Nucleonic-rich nuclei

Chart of nuclei.

- For stable nuclei, nucleus is called "magic nucleus" if Z or N = 2, 8, 20, 28, 50, ...
- Nucleonic-rich nuclei have large |Z N|, magic number may be different.
- Their half-live is very short (⁶⁸Fe: $T_{1/2}$ =187(6) ms).
- They can be created only in laboratory (accelerator, ...).

Nucleonic-rich nuclei

Chart of nuclei.

- For stable nuclei, nucleus is called "magic nucleus" if Z or N = 2, 8, 20, 28, 50,
- Nucleonic-rich nuclei have large |Z N|, magic number may be different.
- Their half-live is very short (⁶⁸Fe: $T_{1/2}$ =187(6) ms).
- They can be created only in laboratory (accelerator, ...).

SEASTAR measurements

+ Measuring 2_1^+ states, systematically, from ⁵²Ar to ¹¹⁰Zr. Where the physics interests can be mentioned as:

- Neutron sub-shell at N = 34 below ${}^{54}Ca$ (${}^{52}Ar$)
- \bullet Correlation in Ca isotopes beyond $^{54}\mbox{Ca}$ ($^{56}\mbox{Ca}$)
- Low-Z shore of the N = 40 (^{60,62}Ti)
- Collectivity evolution beyond N = 40 (⁶⁶Cr, ⁷²Fe)
- Anticipated new doubly-magic nucleus ⁷⁸Ni.

Neutron Number N

+ Detailed shell evolution via levels of even-odd isotopes (by products) through their spectroscopy

For example of: $^{47,49}\text{Cl},~^{51,53}\text{K},~^{67}\text{Fe},~^{79}\text{Cu},~\ldots$

+ In addition, E(4⁺₁) will be measured for many nuclei (60,62 Ti, 66 Cr, 82 Zn, 86,88 Ge...).

SEASTAR measurements

+ Measuring 2_1^+ states, systematically, from ⁵²Ar to ¹¹⁰Zr. Where the physics interests can be mentioned as:

- Neutron sub-shell at N = 34 below 54 Ca (52 Ar)
- \bullet Correlation in Ca isotopes beyond $^{54}\mbox{Ca}$ ($^{56}\mbox{Ca}$)
- Low-Z shore of the N = 40 (^{60,62}Ti)
- Collectivity evolution beyond N = 40 (⁶⁶Cr, ⁷²Fe)
- Anticipated new doubly-magic nucleus ⁷⁸Ni.

Neutron Number N

+ Detailed shell evolution via levels of even-odd isotopes (byproducts) through their spectroscopy

For example of: $^{47,49}\text{Cl},~^{51,53}\text{K},~^{67}\text{Fe},~^{79}\text{Cu},~\ldots$

+ In addition, $E(4_1^+)$ will be measured for many nuclei (^{60,62}Ti, ⁶⁶Cr, ⁸²Zn, ^{86,88}Ge...).

In which, the analysis of 67,68,69,71 Fe and 63,65 Cr data are performed by Vietnamese group at INST (Institute for Nuclear Science and Technology).

1.Introduction

$E(2_1^+)$ measurement - a tool for nuclear structure structure

- E(2⁺₁) is needed to level up to the first excited state
- Measure E(2⁺₁) systematically, if E(2⁺₁) is high ⇒ evidence of "new magic number"

$E(2_1^+)$ measurement - a tool for nuclear structure structure

 Measure E(2⁺₁) systematically, if E(2⁺₁) is high ⇒ evidence of "new magic number"

Exa.: Systematics of $E(2_1^+)$ around Ca. \implies Doubly-magic evidence of ${}^{52,54}Ca$

(F. Wienholtz *et al.* Nature **498** (2013) 346; D. Steppenbeck *et al.* Nature **502** (2013) 207)

$E(2_1^+)$ measurement - a tool for nuclear structure states

- E(2⁺₁) is needed to level up to the first excited state
- Measure E(2⁺₁) systematically, if E(2⁺₁) is high ⇒ evidence of "new magic number"

Exa.: Systematics of $E(2_1^+)$ around Ca. \implies Doubly-magic evidence of ${}^{52,54}Ca$

(F. Wienholtz *et al.* Nature **498** (2013) 346; D. Steppenbeck *et al.* Nature **502** (2013) 207)

- Radioactive Isotope Beam Factory (RIBF) at RIKEN:
 - \bullet Provided high intensities of primary beams ($^{70}{\rm Zn}$ and $^{238}{\rm U}$) at energies up to 350 MeV/u, and capability of
 - Beam identification with BigRIPS.
 - Fragment identification with ZeroDgree.

- Radioactive Isotope Beam Factory (RIBF) at RIKEN:
 - \bullet Provided high intensities of primary beams ($^{70}{\rm Zn}$ and $^{238}{\rm U}$) at energies up to 350 MeV/u, and capability of
 - Beam identification with BigRIPS.
 - Fragment identification with ZeroDgree.
- Detector MINOS (nuclear Maglc Number Off Stability) with capability of precisely vertex (or interaction) point, Z_v, reconstruction.
 ⇒ increase target thickness ⇔ increase luminosity

- Radioactive Isotope Beam Factory (RIBF) at RIKEN:
 - \bullet Provided high intensities of primary beams ($^{70}{\rm Zn}$ and $^{238}{\rm U}$) at energies up to 350 MeV/u, and capability of
 - Beam identification with BigRIPS.
 - Fragment identification with ZeroDgree.
- Detector MINOS (nuclear Maglc Number Off Stability) with capability of precisely vertex (or interaction) point, Z_ν, reconstruction.
 ⇒ increase target thickness ⇔ increase luminosity
- DALI2 (Detector Array for Low Intensity radiation) with capability of in-beam γ-ray detection. Using the above Z_V as the input for Doppler-shift correction ⇒ precisely E_γ

determination. determination ν as the input for Doppler-shift correction \implies precisely

- Radioactive Isotope Beam Factory (RIBF) at RIKEN:
 - \bullet Provided high intensities of primary beams ($^{70}{\rm Zn}$ and $^{238}{\rm U}$) at energies up to 350 MeV/u, and capability of
 - Beam identification with BigRIPS.
 - Fragment identification with ZeroDgree.
- Detector MINOS (nuclear Maglc Number Off Stability) with capability of precisely vertex (or interaction) point, Z_ν, reconstruction.
 ⇒ increase target thickness ⇔ increase luminosity
- DALI2 (Detector Array for Low Intensity radiation) with capability of in-beam γ -ray detection. Using the above Z_{ν} as the input for Doppler-shift correction \implies precisely E_{γ} determination.
- The 1st and 2nd SEASTAR experiments were in May 2014 and 2015, respectively. (The 3rd one will be on May 8-14 2017.)

It is noted that for such search in this nuclear region, the experiments can only be conducted if the current primary beam intensities increase by at least **one order of magnitude**.

Current knowledge in ⁶⁸Fe

- The first spectroscopy of ⁶⁸Fe has been reported via one- and two-proton knockout from ⁶⁹Co and ⁷⁰Ni at NSCL.

- Two transitions were observed at 517(6) keV and 859(9) keV.

- There was a week indication at 808(9) keV but not concluded yet.

Current knowledge in ⁶⁸Fe

- The first spectroscopy of ⁶⁸Fe has been reported via one- and two-proton knockout from ⁶⁹Co and ⁷⁰Ni at NSCL.

- Two transitions were observed at 517(6) keV and 859(9) keV.

- There was a week indication at 808(9) keV but not concluded yet.

- The above two levels were then confirmed by the experiment at GANIL by detecting β -delayed γ -ray emission of ⁶⁸Mn.

- These transition were associated with $2^+ \to 0^+$ and $4^+ \to 2^+$, respectively, in collective model.

J. M. Daugas et al., Phys. Rev. C 83 (2011) 054312

Current knowledge in ⁶⁸Fe

- More observed levels were 1249.5 and 1513.7 keV besides 521.2 and 865.3 keV via β -delayed γ -ray emission of ⁶⁸Mn at NSCL.

- However, the transition states are unkown: 865.3 keV $(? \rightarrow 2^+)$, 1249.5 keV $(? \rightarrow ?)$, 1513.7 keV $(? \rightarrow ?)$ except, 521.2 keV $(2^+ \rightarrow 0^+)$.

RIKEN Facility

- RIPS: an in-flight type radioactive isotope (RI) separator.
- IRC: Intermediate-stage Ring Cyclotron.
- SRC: Superconducting Ring Cyclotron.

SEASTAR Setup: MINOS + DALI2

 $\mathsf{MINOS}{\oplus}\mathsf{DALI2}$ installed at user location

MINOS inside DALI2

MINOS: Recoiled proton detection (nuclear Maglc Number Off Stability)

BigRIPS (Big Radioactive-IsotoPe beam Separator)

NST

Detector MINOS (nuclear MagIc Number Off Stability

Time Projection Chamber (TPC) electrode: 18 rings divided into number of identical pads, 3604 electronics channels.

(O. Alexandre et al., Eur. Jour. Phys. A 50 (2014) 8)

- 2-proton track observed by TPC.
- Z_v reconstruction by TPC.

DALI2: Detector Array for Low Intensity radiation

- DALI2 consists of 186 Nal crystals,
- For γ -ray detection.
- Doppler-shift correction:

$$E_{\gamma 0} = E_{\gamma} \frac{1 - \beta \cos \vartheta_{\gamma}}{\sqrt{1 - \beta^2}}$$

 $E_{\gamma 0}, E_{\gamma}$ are de-excited γ -ray energy in the rest frame and observed γ -ray energy, respectively, ϑ_{γ} is γ -ray emission angle, $\beta = v/c$, v is the nucleus' velocity

Conclusion and perspective

The in-beam gamma spectroscopy of 68 Fe was analysed via (p,2p), (p,p'), (p,n) and (p,3p) channels.

- 5 excited gamma rays of ⁶⁸Fe were observed at 277(3), 519(5), 868(8), 1066(11) and 1301(17) keV.
- 3 new transitions have been observed at 277(3), 1066(11) and 1301(17) keV.
- The level scheme of ⁶⁸Fe was proposed and the state quantum number was assigned preliminarily derived from gamma-gamma coincidence and the comparison with the shell model calculation.
- The inclusive and exclusive cross sections of (p,2p), the inclusive cross sections of (p,p') and (p,pn) were derived.

Spectroscopy of the neutron-rich iron isotopes ^{67,68}Fe

L.X. Chung,¹ B.D. Linh,¹ A. Gillibert,² P. Doornenbal,³ A. Obertelli,^{2,3} F. Nowacki,⁴ G. Authelet,² H. Baba,³ D. Calvet,² F. Château,² A. Corsi,² A. Delbart,² J.-M. Gheller,² T. Isobe,³ V. Lapoux,² M. Matsushita.⁵ S. Momiyama,^{3,6} T. Motobavashi,³ M. Niikura,⁶ H. Otsu,³ C. Péron,² A. Pevaud,² E.C. Pollacco,² J.-Y. Roussé,² H. Sakurai,^{3,6} C. Santamaria,^{2,3} M. Sasano,³ Y. Shiga,^{3,7} S. Takeuchi,³ B. Taniuchi ^{3,6} T. Uesaka ³ H. Wang ³ K. Yoneda ³ F. Browne ⁸ Zs. Dombradi ⁹ S. Franchoo ¹⁰ F. Giacoppo,¹¹ A. Gottardo,¹⁰ K. Hadynska-Klek,¹¹ N.T. Khai,¹ Z. Korkulu,⁹ S. Koyama,^{3,6} Y. Kubota,^{3,5} C. Louchart.¹² J. Lee.¹³ M. Lettmann.¹² R. Lozeva.⁴ K. Matsui.^{3,6} T. Miyazaki.^{3,6} S. Nishimura.³ L. Olivier.¹⁰ S. Ota.⁵ Z. Patel.¹⁴ N. Pietralla.¹² E. Sahin.¹¹ C. Shand.¹⁴ P.-A. Söderström.³ G.L. Stefan.¹⁰ D. Steppenbeck,⁵ T. Sumikama,¹⁵ D. Suzuki,¹⁰ N.D. Ton,¹ Zs. Vaita,⁹ V. Werner,¹² J. Wu,^{3,16} and Z. Xu¹³ ¹Institute for Nuclear Science & Technology, VAEL 179 Hoang Ouoc Viet, Cay Giay, Hanoi, Vietnam ²IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ³BIKEN Nishina Center 2-1 Hirosawa Wako Saitama 351-0198 Japan ⁴ IPHC, CNRS/IN2P3, Université de Strasboura, F-67037 Strasboura, France ⁵Center for Nuclear Study, University of Tokyo, RIKEN campus, Wako, Saitama 351-0198, Japan ⁶Department of Physics, University of Tokyo, 7-3-1 Honao, Bunkyo, Tokyo 113-0033, Japan ⁷Department of Physics, Rikkuo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokuo 172-8501, Japan ⁸School of Computing Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom ⁹MTA Atomki, P.O. Box 51, Debrecen H-4001, Hungary ¹⁰Institut de Physique Nucléaire Orsay, IN2P3-CNRS, 91406 Orsay Cedex, France ¹¹Department of Physics, University of Oslo, N-0316 Oslo, Norway ¹⁸Institut f
ür Kernphysik, Technische Universit
ät Darmstadt, 64289 Darmstadt, Germany ¹³Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong. ¹⁴Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ¹⁵Department of Physics, Tohoku University, Sendai 980-8578, Japan

¹⁶State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, P.R. China

The in-beam gamma-ray spectroscopy of 67 Fe and 68 Fe from hydrogen-induced neutron and proton knockont and inelastic scattering at 250 MeV/nucleon is reported. The experiment was performed at the Radioactive-hotope Beam Factory of RIKEN with a setup composed of the MINOS targettracker and the DALIZ Nat scintillator array. New transitions were observed and level schemes are proposed. The proposed level schemes are analyzed within the shell-model framework using a modified version of the LNPS interaction in the valence space. Inclusive and exclusive cross sections have been extracted and are interpreted using the distorted-wave impulse approximation and the eikonal assumption combined with shell model spectroscopic factors.

PACS numbers: 24.50.+g

I. INTRODUCTION

Nuclear structure is characterized by few spherical nuclei located around shell closures and large deformation regions. The appearance or onset of quadrupole deforof deformation has been evidenced to a larger region [4] extending up to ^{38}Mg . This deformation area has been qualified as Island of Inversion from the interpretation of a shell-model 2p-2h configuration with two neutron holes in the *sd* shell and two neutrons in the intruder *fp* shell, energetically favored compared to the normal

to be submitted to PRC!

Thanks for your attention!

SEASTAR Collaborators.