
Dynamic and static core excitation effects on deformed halo nuclei

¹<u>S. Watanabe</u>, ²K. Ogata, ³T. Matsumoto

¹RIKEN, ²RCNP, Osaka University , ³Kyushu University

10/March/2017

International Workshop on Quantum Many-Body Problems in Particle, Nuclear, and Atomic Physics Duy Tan University, Danang City, Vietnam

Discovery of halo

VOLUME 55, NUMBER 24

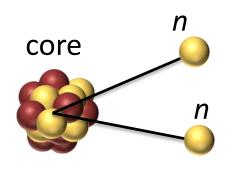
PHYSICAL REVIEW LETTERS

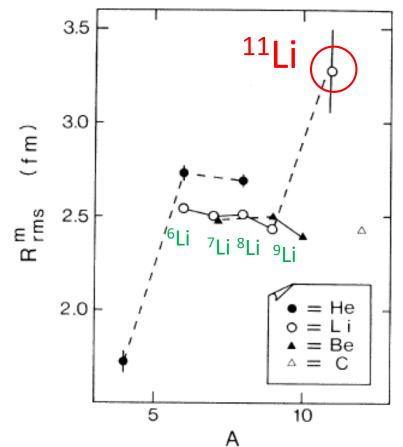
9 DECEMBER 1985

Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region

I. Tanihata,^(a) H. Hamagaki, O. Hashimoto, Y. Shida, and N. Yoshikawa Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan

K. Sugimoto,^(b) O. Yamakawa, and T. Kobayashi

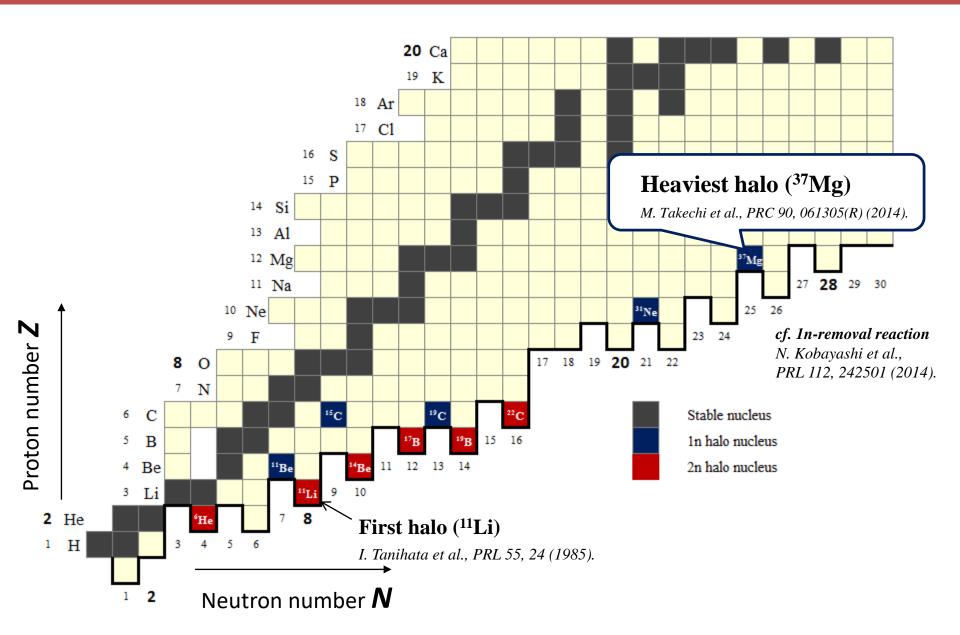

Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720


and

N. Takahashi

Neutron halo

One or two neutron(s) surround very far from a core nucleus.



A large cross section was

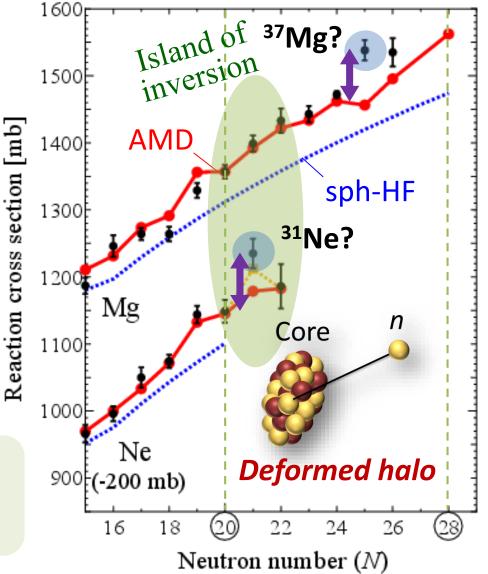
measured in Li isotopes.

Resent development of reaction cross sections (σ_R)

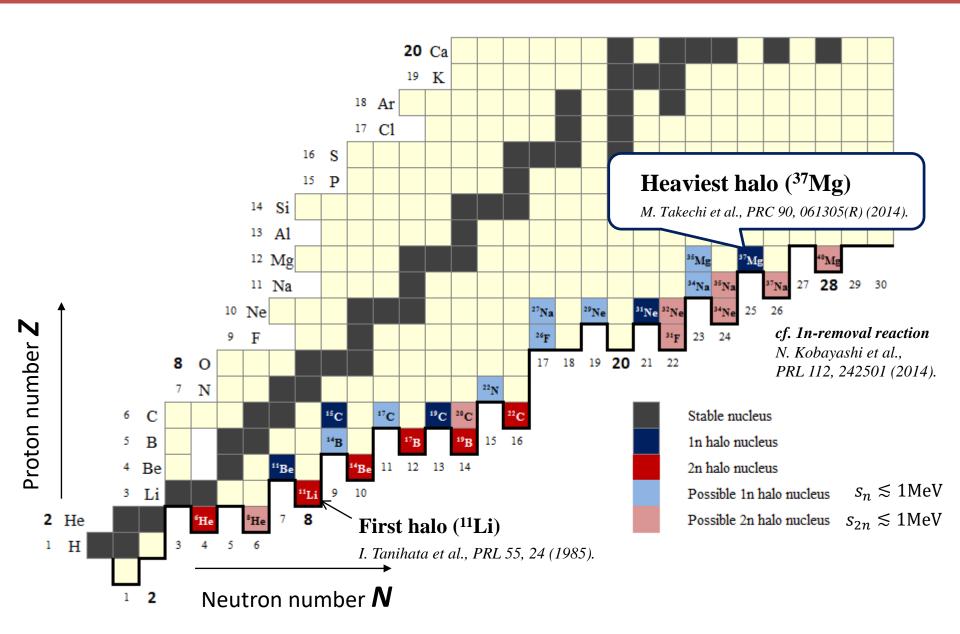
Systematic analysis of σ_R

Experiment

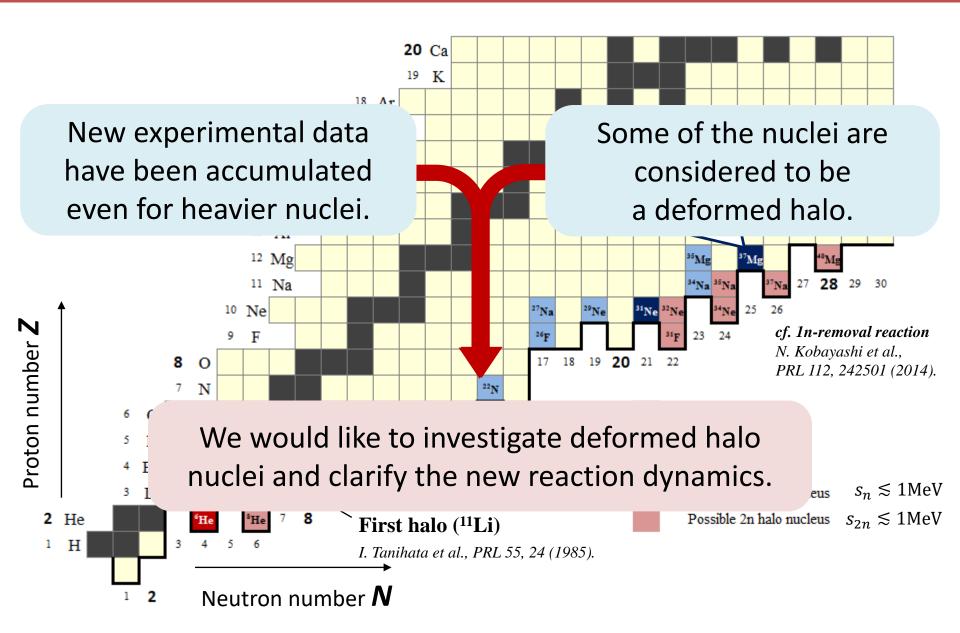
Total reaction cross sections (σ_R) were measured systematically. *M. Takechi et al.*, *PRC* 90, 061305(*R*) (2014). *M. Takechi et al.*, *PLB* 707, 357 (2012).


Theory

The σ_R were analyzed in the microscopic framework based on AMD and the double folding model.


S. Watanabe et al., PRC 89, 044610 (2014).

K. Minomo et al., PRL 108, 052503 (2012).


19 \leq N: Largely deformation ³¹Ne, ³⁷Mg: Deformed halo

Resent development of reaction cross sections (σ_R)

Resent development of reaction cross sections (σ_R)

Table of contents

1. General few-body approaches

- i. General few-body approaches and the problem
- ii. Core excitation effects

2. Static core-excitation effects (Structure)

- i. Total Hamiltonian
- ii. Particle rotor model ($^{11}Be = n + ^{10}Be$)

3. Dynamic core-excitation effects (Reaction)

- i. DWBA with core excitation and the BU mechanism
- ii. Application to ¹¹Be scattering

4. Summary

Table of contents

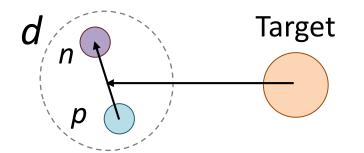
1. General few-body approaches

- i. General few-body approaches and the problem
- ii. Core excitation effects

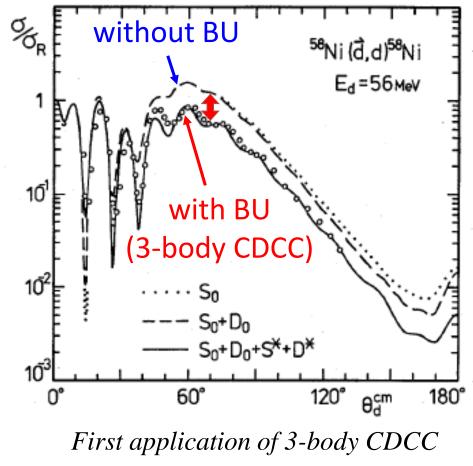
2. Static core-excitation effects (Structure)

- i. Total Hamiltonian
- ii. Particle rotor model ($^{11}Be = n + ^{10}Be$)

3. Dynamic core-excitation effects (Reaction)


- i. DWBA with core excitation and the BU mechanism
- ii. Application to ¹¹Be scattering

4. Summary


CDCC and Breakup effects

CDCC Continuum Discretized Coupled Channels

- ✓ CDCC is a fully quantum mechanical method for treating BU effects.
- ✓ CDCC was born as a theory for *d*-scattering

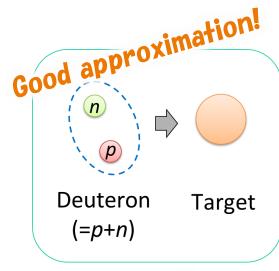
CDCC has been widely applied to many kinds of three-body scattering. (Ex: core + n + T)

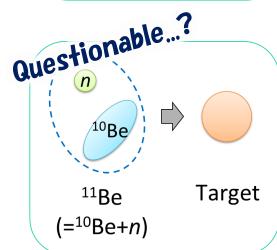
M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, and M. Kawai, Prog. Theor. Phys. Suppl. No. 89 (1986), 32.

General few-body approaches (CDCC, Faddeev, DWBA, ...)

A core nucleus is assumed to be inert.

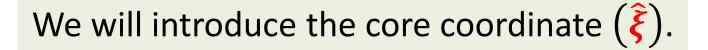
Good approximation for d scattering

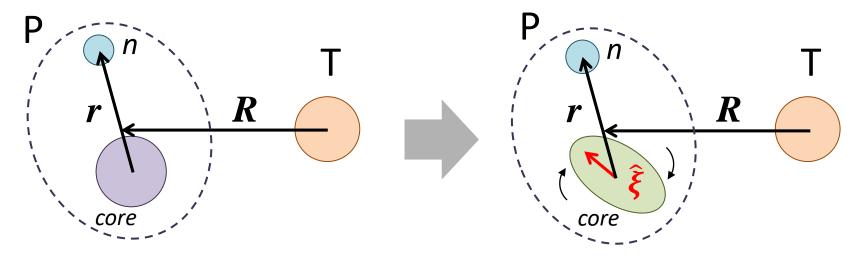

Neutron and proton cannot get excited in the energy scale of our interest.


cf. ⁶He scattering (α core is *inert*)

^(C) **Questionable** for heavier systems

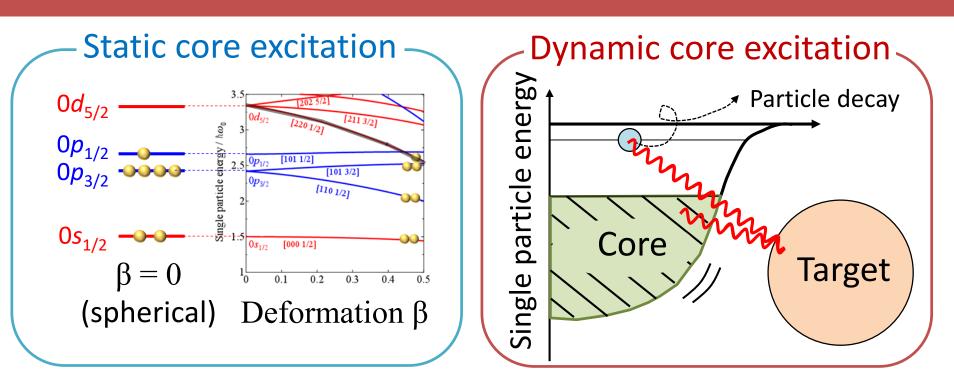
Different core and valence states are coupled with each other.


ex. ¹¹Be, ³⁷Mg (Core is *deformed*)



Immediate work: To develop CDCC for treating core excitation.

Important DoF: Core excitation



Standard 3-body CDCC $\Psi = \Psi(\mathbf{R}, \mathbf{r})$ 3-body CDCC with core Ex. $\Psi = \Psi(\boldsymbol{R}, \boldsymbol{r}, \boldsymbol{\hat{\xi}})$

What kind of physics appears by taking into account the core excitation?

Static and Dynamic Core Excitation Effects

- Single particle energy changes
- Coupled to several core states
- BU due to neutron excitation
- BU due to core excitation

I would like to understand "Static" and "Dynamic" core excitation effects simultaneously.

Purpose

Final goal

To develop the CDCC method for treating core-excitation effects explicitly.

- Investigation of scattering of deformed halos
- Application for cluster physics DWBA: First order approximation of CDCC

Present goal

 To develop
 DWBA (Distorted Wave Born Approximation) for treating core excitation.

- Good prototype (DWBA = CDCC for $\hat{V} \sim 0$)
- Simple estimation of core-excitation effects in the BU reaction

Table of contents

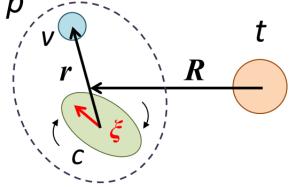
1. General few-body approaches

- i. General few-body approaches and the problem
- ii. Core excitation effects

2. Static core-excitation effects (Structure)

- i. Total Hamiltonian
- ii. Particle rotor model ($^{11}Be = n + ^{10}Be$)

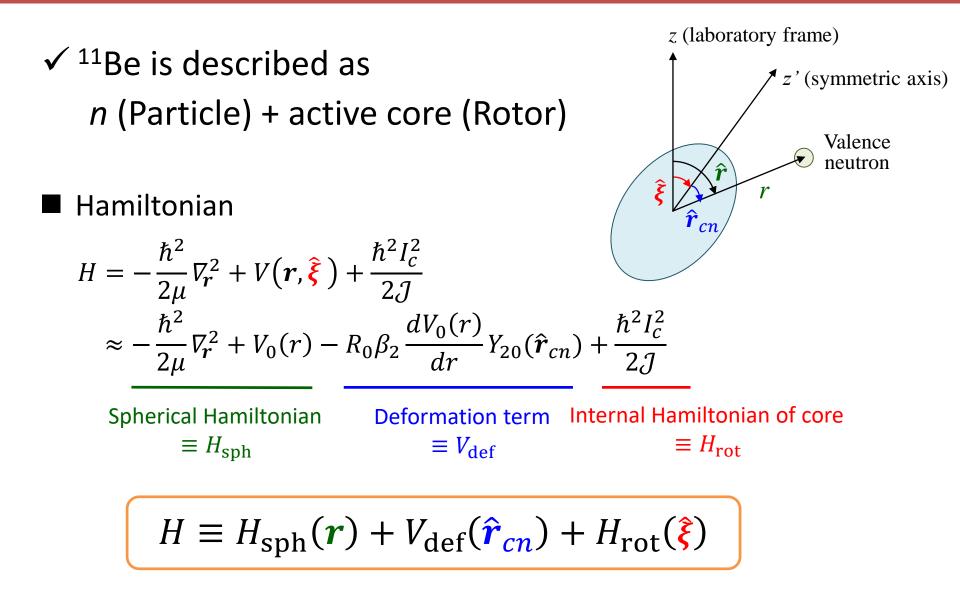
3. Dynamic core-excitation effects (Reaction)


- i. DWBA with core excitation and the BU mechanism
- ii. Application to ¹¹Be scattering

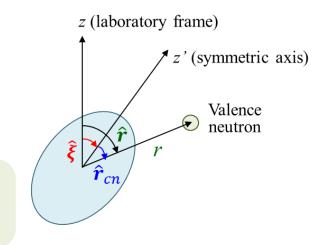
4. Summary

We explicitly introduce the core DoF $(\hat{\boldsymbol{\xi}})$.

$$H_{\text{tot}} = K_{\boldsymbol{R}} + V_{vt}(R_{vt}) + V_{ct}(\boldsymbol{R}_{ct}, \boldsymbol{\hat{\xi}}) + h_{p}$$
$$h_{p} = K_{\boldsymbol{r}} + V(\boldsymbol{r}, \boldsymbol{\hat{\xi}}) + h_{c}(\boldsymbol{\hat{\xi}})$$


 \rightarrow I will show you the actual interactions later.

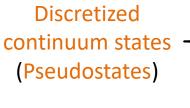
First, we should understand projectile part (h_p) .


 \rightarrow Let's take ¹¹Be as an example.

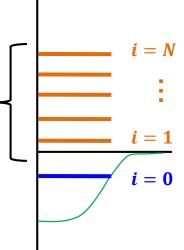
Particle Rotor Model (PRM)

How to solve this problem?

$$[H - E]\Psi_{JM}(\boldsymbol{r}, \hat{\boldsymbol{\xi}}) = 0$$
$$H = H_{\rm sph}(\boldsymbol{r}) + V_{\rm def}(\boldsymbol{r}, \hat{\boldsymbol{\xi}}) + H_{\rm rot}(\hat{\boldsymbol{\xi}})$$


3

$$\Psi_{JM}(\boldsymbol{r}, \boldsymbol{\hat{\xi}}) = \sum_{n\ell j} \sum_{I} \alpha_{n\ell jI} \left[\phi_{n\ell j}^{(\text{sph})}(\boldsymbol{r}) \otimes \Phi_{I}^{(\text{rot})}(\boldsymbol{\hat{\xi}}) \right]_{JM}$$


$$\phi_{n\ell j}^{(\text{sph})}(\mathbf{r}) = \sum_{k=1}^{N} \beta_k \varphi_k(\mathbf{r}) \varphi_{(\ell s)j}(\hat{\mathbf{r}})$$

Gaussian basis

E. Hiyama, Y. kino, M. Kamimura, Prog. Part. Nucl. Phys. **51**, 223 (2003).

Diagonalization

Model Setting

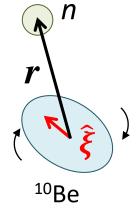
Hamiltonian

$$H = -\frac{\hbar^2}{2\mu} \nabla_r^2 + V_0(r) + V_{\rm def}(\hat{r}_{cn}) + \frac{\hbar^2 I_c^2}{2\mathcal{J}}$$

Parameter set of WS potential

$$V_{\rm WS} = -54.239 \text{ MeV}, V_{\rm SO} = -8.50 \text{ MeV}$$

 $R = 2.483 \text{ fm}, a = 0.65 \text{ fm}$


F.M. Nunes et al., NPA609 43 (1996).

¹⁰Be core

$$\beta_2 = 0.67, E(2 +) = 3.368 \text{ MeV}$$

Model space

$$\ell = 0, 2 \ I = 0, 2$$

Result of the positive-state energies

theory	exp
[MeV]	[MeV]
	3.368 ¹⁰ Be(2+)+n
3.123 ////// 3/2+	3.2 ////// 3/2-)
	2.7 ////// 3/2-
1.236 ////// 5/2+	1.2 ////// 5/2+
	0 ¹⁰ Be(0 ⁺)+n
	-0.18 1/2-
-0.502 — 1/2+	-0.50 — 1/2+

We will consider the 5/2+ and 3/2+ BU reactions.

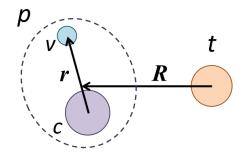
Table of contents

1. General few-body approaches

- i. General few-body approaches and the problem
- ii. Core excitation effects

2. Static core-excitation effects (Structure)

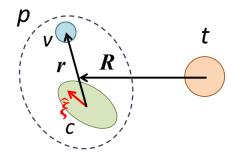
- i. Total Hamiltonian
- ii. Particle rotor model ($^{11}Be = n + ^{10}Be$)


3. Dynamic core-excitation effects (Reaction)

- i. DWBA with core excitation and the BU mechanism
- ii. Application to ¹¹Be scattering

4. Summary

DWBA (Distorted Wave Born Approximation)

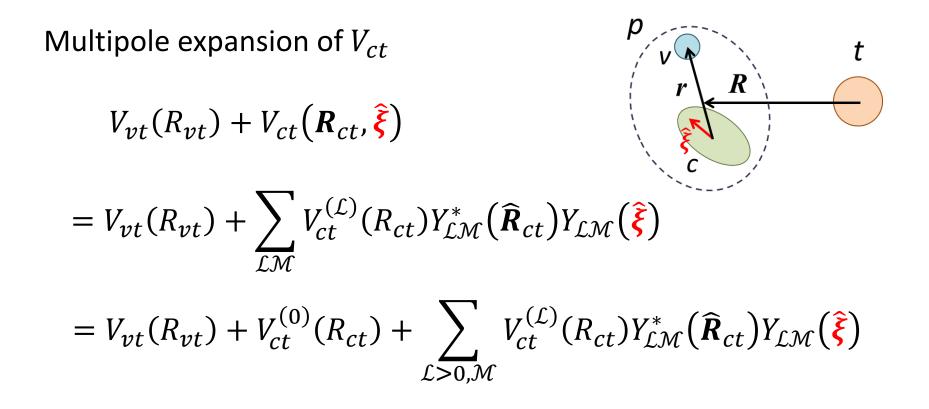

Standard DWBA (since 1950s)

$$T_{pt}^{J'M',JM}(\mathbf{K}',\mathbf{K}) = \left\langle \chi_{\mathbf{K}'}^{(-)}(\mathbf{R}) \Psi_{J'M'}^{f}(\mathbf{r}) \middle| V_{vt}(R_{vt}) + V_{ct}(R_{ct}) \middle| \chi_{\mathbf{K}}^{(+)}(\mathbf{R}) \Psi_{JM}^{i}(\mathbf{r}) \right\rangle$$

Extended DWBA

A. Moro and R. Crespo., PRC 85, 054613 (2012)

static core excitation


$$T_{pt}^{J'M',JM}(K',K) = \left\{ \chi_{K'}^{(-)}(R) \Psi_{J'M'}^{f}(r,\hat{\xi}) \middle| V_{vt}(R_{vt}) + V_{ct}(R_{ct},\hat{\xi}) \middle| \chi_{K}^{(+)}(R) \Psi_{JM}^{i}(r,\hat{\xi}) \right\}$$

dynamic core excitation

DWBA description of BU reaction

Extended DWBA

$$T_{pt}^{J'M',JM} = \left\langle \chi_{K'}^{(-)}(\boldsymbol{R}) \Psi_{J'M'}^{f}(\boldsymbol{r},\boldsymbol{\hat{\xi}}) \middle| V_{vt}(R_{vt}) + V_{ct}(\boldsymbol{R}_{ct},\boldsymbol{\hat{\xi}}) \middle| \chi_{K}^{(+)}(\boldsymbol{R}) \Psi_{JM}^{i}(\boldsymbol{r},\boldsymbol{\hat{\xi}}) \right\rangle$$

DWBA description of BU reaction

Extended DWBA

$$T_{pt}^{J'M',JM} = \left\langle \chi_{K'}^{(-)}(\boldsymbol{R}) \Psi_{J'M'}^{f}(\boldsymbol{r},\boldsymbol{\hat{\xi}}) \middle| V_{vt}(R_{vt}) + V_{ct}(\boldsymbol{R}_{ct},\boldsymbol{\hat{\xi}}) \middle| \chi_{K}^{(+)}(\boldsymbol{R}) \Psi_{JM}^{i}(\boldsymbol{r},\boldsymbol{\hat{\xi}}) \right\rangle$$

$$T_{pt}^{J'M',JM} = T_{\text{val}}^{J'M',JM} + T_{\text{corex}}^{J'M',JM}$$

Valence excitation

$$T_{\rm val}^{J'M',JM} = \left\langle \chi_{K'}^{(-)}(\mathbf{R}) \Psi_{J'M'}^{f}(\mathbf{r}, \hat{\boldsymbol{\xi}}) \middle| V_{vt}(R_{vt}) + V_{ct}^{(0)}(R_{ct}) \middle| \chi_{K}^{(+)}(\mathbf{R}) \Psi_{JM}^{i}(\mathbf{r}, \hat{\boldsymbol{\xi}}) \right\rangle$$

 \rightarrow Excite valence coordinate (r)

t

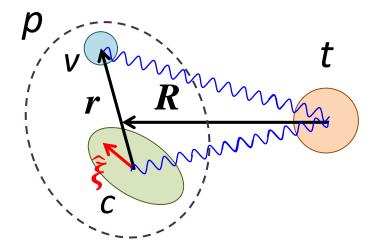
R

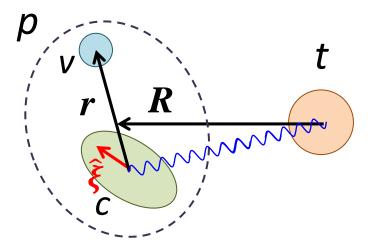
Core excitation

$$T_{\text{corex}}^{J'M',JM} = \left\langle \chi_{K'}^{(-)}(\boldsymbol{R}) \Psi_{J'M'}^{f}(\boldsymbol{r}, \hat{\boldsymbol{\xi}}) \right| \sum V_{ct}^{(\mathcal{L})}(R_{ct}) Y_{\mathcal{LM}}^{*}(\hat{\boldsymbol{R}}_{ct}) Y_{\mathcal{LM}}(\hat{\boldsymbol{\xi}}) \left| \chi_{K}^{(+)}(\boldsymbol{R}) \Psi_{JM}^{i}(\boldsymbol{r}, \hat{\boldsymbol{\xi}}) \right|$$

$$\rightarrow \text{Excite core coordinate}(\hat{\boldsymbol{\xi}})$$

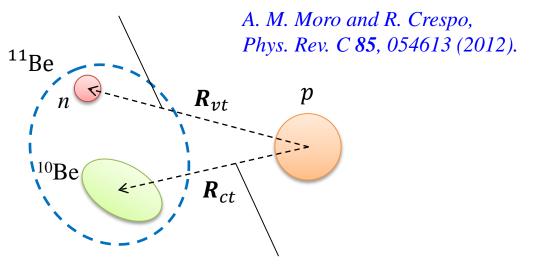

Brief summary: Two types of BU mechanisms


$$T_{pt}^{J'M',JM}(\boldsymbol{K}',\boldsymbol{K}) = T_{\text{val}}^{J'M',JM}(\boldsymbol{K}',\boldsymbol{K}) + T_{\text{corex}}^{J'M',JM}(\boldsymbol{K}',\boldsymbol{K})$$


Valence excitation

Core excitation

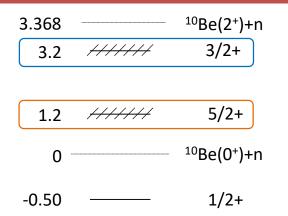
interaction: $V_{vt}(R_{vt}) + V_{ct}^{(0)}(R_{ct})$

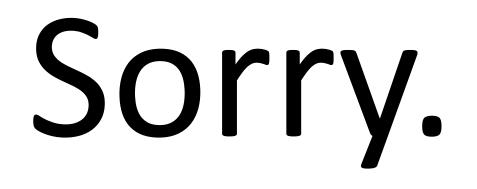

These two mechanisms compete with each other.

Model setting of reaction part

¹¹Be+*p* at 63.7 MeV/nucl.

 V_{nt} : $V(r) = -45e^{-(r/1.484)^2}$


Determined to reproduce the realistic Faddeev calculation. (with CD Bonn)


 V_{ct} : Phenomenological optical potential

B. A. Watson et al., Phys. Rev. 182, 977 (1969).

Resonant breakup cross section

$$\frac{d\sigma}{d\Omega} \propto \sum_{MM'} \left| T_{pt}^{J'M',JM} \right|^2$$
$$T_{pt}^{J'M',JM} = T_{\text{val}}^{J'M',JM} + T_{\text{corex}}^{J'M',JM}$$

Summary

We are developing our reaction model (CDCC) for the explicit treatment of core excitation.

First, we developed DWBA for treating core excitation.

Until now: Core is assumed to be inert.
 From now: Core excitation will be a key mechanism in nuclear reaction.
 ➢ This effect appears in ¹¹Be+p scattering.

Future plan: Develop DWBA into CDCC.

Analyze ³¹Ne, ³⁷Mg etc. (deformed halo) ¹⁵C (spherical halo)

⇒ General properties of core-induced BU reaction?